

8th International Workshop on PRedictive Intelligence in Medicine

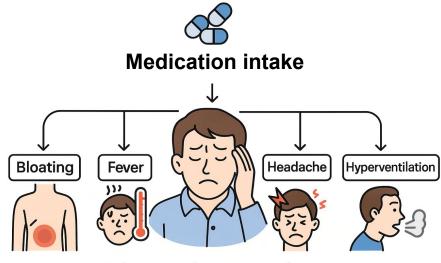
MMM: Quantum-Chemical Molecular Representation Learning for Combinatorial Drug Recommendation

Chongmyung Kwon, Yujin Kim, Seoeun Park, Yunji Lee, Charmgil Hong {21900053, 22200150, 22201019, 22100549, charmgil}@handong.ac.kr

Handong Global University

Background

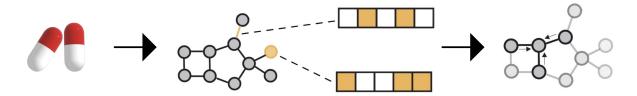
- Drug-Drug interaction (DDI)
 - 6.3% of reported DDIs resulted in patient mortality [FDA., 2024]
 - DDIs are a leading causes of adverse events and hospitalizations
 - Polypharmacy increase the likelihood of harmful interactions
 - Many DDIs remain underreported or undetected at prescription time [Spanakis et al., 2025]
 - → Need a model that reduces DDIs while preserving therapeutic effectiveness



Adverse drug reactions

Introduction

- Approaches relying solely on longitudinal Electronic Health Records (EHRs) data [Choi et al., 2016], [Pham et al., 2016]
 - Capture temporal patterns of patient history through sequential EHRs
 - **→** Limitations:
 - Completely ignore molecular-level drug properties
- Approaches based on molecular graphs [Yang et al., 2021], [Yang et al., 2023]
 - Incorporate structural information of drugs through graph representations
 - **→** Limitations:
 - Graph Neural Networks (GNN) [Scarselliet al., 2009] rely on local neighborhood aggregation
 - Difficult to capture global molecular properties



Introduction

Insights

- O 3D structural information of molecules [Zhu et al., 2022], [Stärk et al., 2022], [Liu et al., 2021]
 - "Molecules should be represented at the quantum-chemical level or in 3D to better capture their structure."
- O Probabilistic internal characteristics [Fukui et al., 1952]
 - "The probabilistic nature of molecular internal structure must be considered."
- Energy distribution across molecular orbitals [Yu et al., 2022]
 - "Energy distribution within molecular orbitals must be utilized to identify reactive regions and predict binding affinity."

Motivation

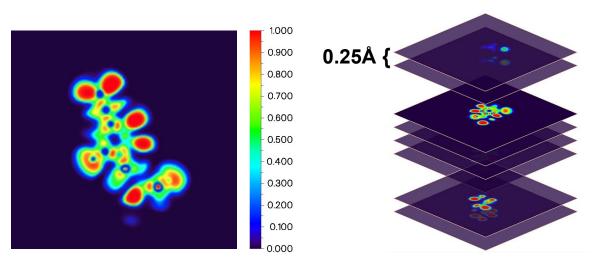
Research Questions

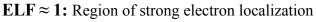
- Current models on EHR capture temporal patterns of patient history
- But they often lack sufficient drug-level information for safe recommendations
- GNNs introduced to include drug structure information
 - Still, a key question remains: Are current approaches fully capturing drug information, and how can we do better?

We propose MMM: Multimodal DDI Prediction with Molecular Electron Localization Function Maps

Motivation

- ELF maps [Savin et al., 1997]
 - Provide continuous 3-Dimensional (3D) of electron pair localization
 - Capture reactive sites & covalent bonds
 - Generated by Density Functional Theory (DFT) [Dreizler et al., 2012] calculations
 - → Enables a richer understanding of DDI mechanisms that were previously inaccessible through discrete graph-based structures.





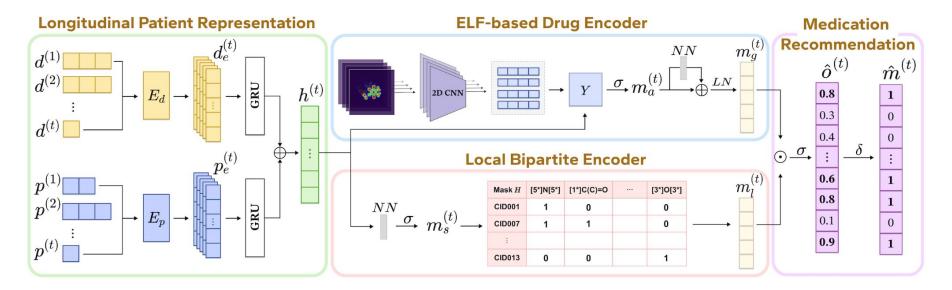
ELF \approx **0**: Region of delocalized electron

Stacked ELF maps



Slices From the 3D Structure

- A combinatorial drug recommendation framework for personalized multi-drug recommendations
 - Longitudinal Patient Representation for summarizing a patient's clinical status
 - ELF-based Drug Encoder for capturing the intrinsic electronic behavior of each drug
 - Local Bipartite Encoder for identifying the importance of drug substructures
 - Medication Recommendation for computing each drug's final prescription probabilities



d: diagnosisp: procedure

Figure 1. Proposed model architecture.

- Longitudinal Patient Representation
 - Generate a patient-specific vector summarizing past diagnoses and procedures at the current time step → The foundation for personalized medication
 - Take diagnoses and procedures as inputs
 - Capture longitudinal clinical history with Gated Recurrent Unit (GRU) [Dey et al., 2017]
 to produce patient embedding

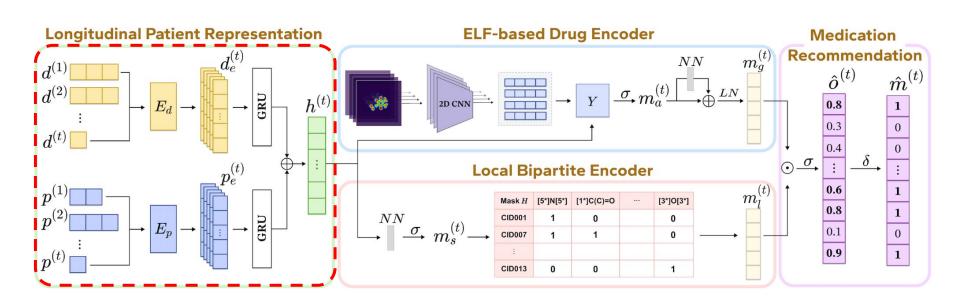


Figure 1. Proposed model architecture.

- ELF-based Drug Encoder
 - Capture 3D molecular structure and electron density distribution
 - **→** To better capture **molecular-level interaction mechanisms**
 - o From Simplified Molecular Input Line Entry System (SMILES) [Weininger et al., 1988]
 - Extract features using pretrained Convolutional Neural Networks (CNN) [LeCun et al., 2002]
 - Capture the relationship between patient status and drug features

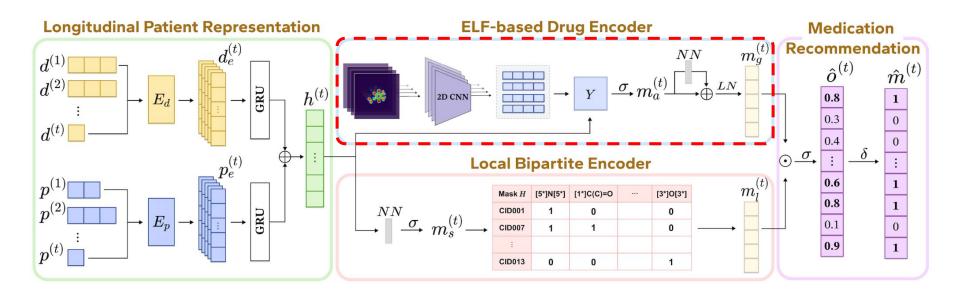


Figure 1. Proposed model architecture.

- Local Bipartite Encoder [Yang et al., 2021]
 - Identifies the importance of drug substructures depending on patient conditions
 - Segments each drug into substructures using Breaking Retrosynthetically Interesting
 Chemical Substructures (BRICS) [Degen et al., 2008] decomposition
 - Encodes inclusion relationships with a binary mask matrix H
 - → Leverages patient-specific substructure information to avoid DDI risk

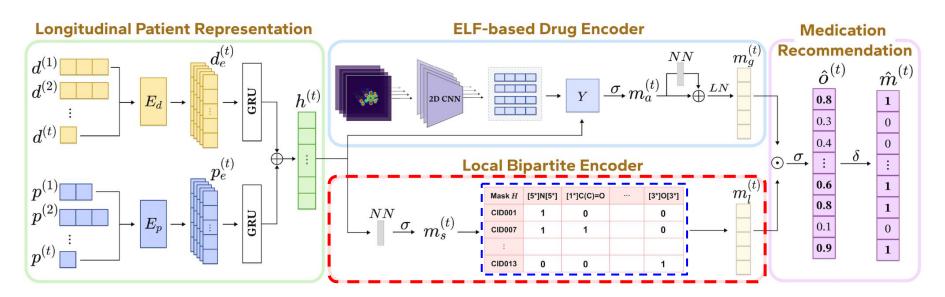


Figure 1. Proposed model architecture.

- Medication Recommendation
 - Fuse the global 3D molecular and local substructure information using element-wise product
 - Predict prescription probability per drug
 - Output multi-label drug recommendations

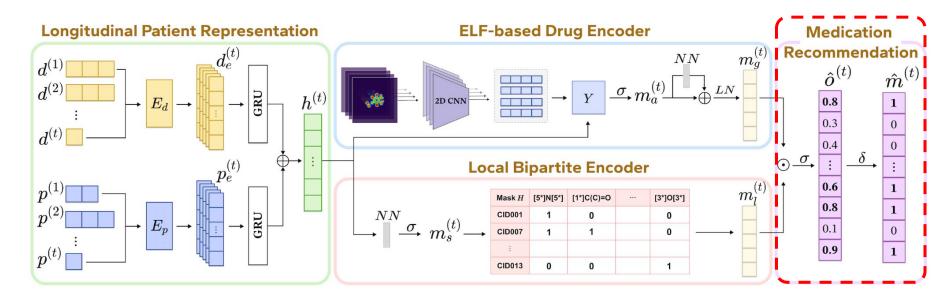


Figure 1. Proposed model architecture.

- Experimental Setting
 - Dataset
 - MIMIC-III dataset [Johnson et al., 2016]
 - Multi-label medication recommendation task using longitudinal EHRs
 - Data components: Diagnosis codes, Procedure codes, and Medication records

Table 1. Data Statistics. (D: Diagnosis, M: Medication, P: Procedure)

Items	Size	$ \mathbf{Items} $	
# of visits/ $#$ of patients	14,057 / 5,413	avg./max # of visits	2.60 / 29
D. / P. / M. space size	1,942 / 1,399 / 250	avg./max # of D. per visit	10.38 / 128
total $\#$ of DDI pairs	4,918	avg./max # of P. per visit	3.85 / 50
total $\#$ of substructures	442	avg./max # of D. per visit avg./max # of P. per visit avg./max # of M. per visit	7.67 / 68

Evaluation Metrics

- To evaluate the performance of medication recommendation,
 - DDI rate: prescription safety, evaluated at the compound level
 - F1-score: predictive effectiveness, evaluated at the Anatomical Therapeutic Chemical third-level codes (ATC3) [WHO., 2000]
 - Jaccard similarity: therapeutic relevance, evaluated at the ATC3 code level

- Can quantum-chemical ELF features improve medication recommendation safety and accuracy?
 - Result
 - MMM significantly outperforms all baseline models
 - MMM reduces the DDI Rate by 9.3%
 - MMM improves the F1-score and Jaccard by 1.6% and 0.76%, respectively
 - → Demonstrating drug safety by reducing the DDI while recommending medications that correspond to therapeutic objectives.

Table 2. Performance Comparison on MIMIC-III (recorded DDI rate is 0.2509).

Model	DDI Rate	Jaccard	F1-score	Avg. # Drugs
Random Forest RETAIN	$0.3652 \pm 0.0018 \\ 0.3325 \pm 0.0098$	Section Control Section Commencer Section Control Section Cont	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
MoleRec	0.0760 ± 0.0031	0.7384 ± 0.0127	0.8353 ± 0.0094	14.9414 ± 1.1696
SafeDrug	j	'F'	,,	$ 13.4697 \pm 1.4838 $
	- 9.30%	+ 1.6%	1 + 0.76%	
MMM	$0.0673 \pm 0.0049^*$	$0.7608 \pm 0.0066^*$	$0.8498 \pm 0.0046^*$	$\big 12.5239 \pm 0.9008\big $

Conclusion

- Proposed a multimodal drug recommendation MMM framework to reduce DDI risks
- By combining patient EHRs with quantum-chemical ELF maps and a bipartite substructure encoder,
 - Capture both global reactivity and patient-specific safety signals
- MIMIC-III Dataset Experiment
 - MMM achieved significantly better accuracy and lower DDI rates compared to existing GNN-based models
- Future Directions
 - Model DDI severity more clearly
 - Expand evaluation to a broader range of drugs, moving closer to real-world clinical use

References

- US Food and Drug Administration. FDA Adverse Event Reporting System (FAERS). 2024.
- Spanakis, M., Tzamali, E., Tzedakis, G., Koumpouzi, C., Pediaditis, M., Tsatsakis, A., & Sakkalis, V. Artificial Intelligence Models and Tools for the Assessment of Drug–Herb Interactions. *Pharmaceuticals*, *18*(3), 282.2025
- Choi, E., Bahadori, M. T., Sun, J., Kulas, J., Schuetz, A., & Stewart, W. (2016). Retain: An interpretable predictive model for healthcare using reverse time attention mechanism. *Advances in neural information processing systems*, 29.
- Pham, T., Tran, T., Phung, D., & Venkatesh, S. (2016, April). Deepcare: A deep dynamic memory model for predictive medicine. In *Pacific-Asia conference*on knowledge discovery and data mining (pp. 30-41). Cham: Springer International Publishing.
- Yang, C., Xiao, C., Ma, F., Glass, L., & Sun, J. (2021). Safedrug: Dual molecular graph encoders for recommending effective and safe drug combinations. arXiv preprint arXiv:2105.02711.
- Yang, N., Zeng, K., Wu, Q., & Yan, J. (2023). Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In *Proceedings of the ACM web conference 2023* (pp. 4075-4085).
- Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. *IEEE transactions on neural networks*, 20(1), 61-80.
- Jinhua Zhu, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. Unified 2d and 3d pre-training of molecular representations. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pages 2626–2636, 2022.
- Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Günnemann, and Pietro Liò. 3d infomax improves gnns for molecular property prediction. In International Conference on Machine Learning, pages 20479–20502. PMLR, 2022.
- Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-training molecular graph representation with 3d geometry. arXiv preprint arXiv:2110.07728, 2021.
- Fukui, K., Yonezawa, T., & Shingu, H. (1952). A molecular orbital theory of reactivity in aromatic hydrocarbons. The Journal of Chemical Physics, 20(4), 722-725.
- Yu, J., Su, N. Q., & Yang, W. (2022). Describing chemical reactivity with frontier molecular orbitalets. JACS au, 2(6), 1383-1394.
- Andreas Savin, Reinhard Nesper, Steffen Wengert, and Thomas F Fässler. Elf: The electron localization function. Angewandte Chemie International Edition in English, 36(17):1808–1832, 1997.
- Dreizler, R. M., & Gross, E. K. (2012). Density functional theory: an approach to the quantum many-body problem. Springer Science & Business Media.
- Dey, R., & Salem, F. M. (2017). Gate-variants of gated recurrent unit (GRU) neural networks. In 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS) (pp. 1597-1600). IEEE.
- Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of chemical information and computer sciences, 28(1), 31-36.
- LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (2002). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278-2324.
- Degen, J., Wegscheid-Gerlach, C., Zaliani, A., & Rarey, M. (2008). On the art of compiling and using 'drug-like' chemical fragment spaces. *ChemMedChem*, *3*(10), 1503.
- Alistair E W Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.
- World Health Organization, & World Health Organization. (2013). Collaborating centre for drug statistics methodology. *Guidelines for ATC classification and DDD assignment*, 3.

Thank you for your attention

Title MMM: Quantum-Chemical Molecular Representation

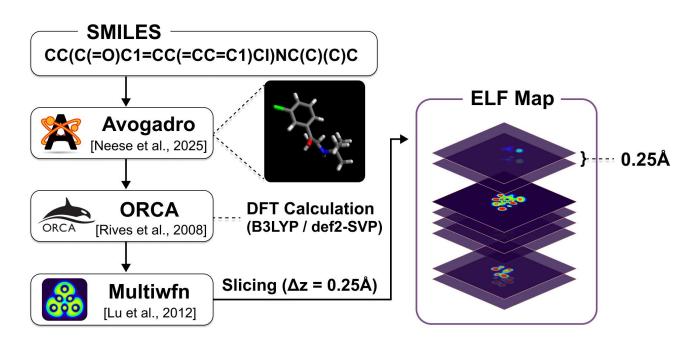
Learning for Combinatorial Drug Recommendation

Presenter Chongmyung Kwon (21900053@handong.ac.kr)

Advisor Charmgil Hong (charmgil@handong.ac.kr)

ELF-based Molecular Representation

- Molecular planes were sliced at 0.25Å to correspond to the spatial scale of the smallest hydrogen atoms.
- ELF maps were generated for all 250 drugs using an AMD Ryzen Threadripper PRO 3955WX CPU, taking approximately 30 hours in total.
- This cost is incurred only once during preprocessing, and the generated ELF maps can be stored and reused during inference.



- Do ELF and Bipartite encoders complement in drug recommendation?
 - We Found
 - Removing bipartite encoder keeps therapeutic metrics high but increases DDI risk
 - Removing ELF encoder lowers DDI risk slightly but reduces therapeutic similarity and effectiveness
 - Complete MMM combines both to maintain low DDI risk and achieve the best Jaccard and F1-score

Table 3. Ablation Study: Effect of Each Component on Model Performance

Model	DDI Rate	Jaccard	F1-score	ig Avg. # Drugs
w/o Bipartite	0.0776 ± 0.0023	0.7450 ± 0.0132	0.8363 ± 0.0104	$ 15.2948 \pm 1.0907 $
Encoder				
${f w/o}~{f ELF}$	0.0610 ± 0.0068	0.7182 ± 0.0297	0.8195 ± 0.0231	15.2336 ± 1.8888
Encoder				
MMM	0.0673 ± 0.0049	0.7608 ± 0.0066	0.8498 ± 0.0046	12.5239 ± 0.9008

- The recorded prescriptions in the dataset resulted in a DDI rate of 0.3214, whereas SafeDrug, MoleRec, and MMM achieved lower DDI rates of 0.0833, 0.0909, and 0.0667, respectively.
- Red color indicates interacting medications.

Table 3. Case Study: Patient from MIMIC-III with multiple diagnoses

		Patient 1	
Diagnosis		Morbid obesity, Hypertension, Osteoarthrosis, Disorders of circulatory system, Accidental hemorrhage	
Prescribed Medications		Gabapentin, Warfarin, Argatroban, Midazolam, Cefazolin, Pantoprazole, Metoprolol, Furosemide	
D , , , , , , , , , , , , , , , , , , ,		Bisacodyl, Docusate, Acetaminophen, Hydromorphone, Metoprolol, Warfarin, Pantoprazole, Lisinopril, Morphine, Oxycodone	
	MoleRec	Acetaminophen, Bisacodyl, Furosemide, Docusate, Hydromorphone, Pantoprazole, Lisinopril, Warfarin, Morphine	
	MMM	Acetaminophen, Bisacodyl, Docusate, Hydromorphone, Metoprolol, Pantoprazole, Clopidogrel, Lisinopril, Ondansetron, Morphine, Oxycodone, Famotidine	

- Can quantum-chemical ELF features improve medication recommendation safety and accuracy?
 - Result
 - MMM significantly outperforms all baseline models
 - MMM achieves the lowest DDI Rate, indicating the highest level of safety
 - MMM achieves the highest Jaccard and F1-scores

Table 2. Performance Comparison on MIMIC-III (recorded DDI rate is 0.2509).

Model	DDI Rate	Jaccard	F1-score	Avg. # Drugs
Random Forest	0.3652 ± 0.0018	0.3123 ± 0.0019	0.4628 ± 0.0023	4.8476 ± 0.0113
RETAIN	0.3325 ± 0.0098	0.4882 ± 0.0129	0.6319 ± 0.0114	5.7883 ± 0.1757
MoleRec	0.0760 ± 0.0031	0.7384 ± 0.0127	0.8353 ± 0.0094	14.9414 ± 1.1696
$\mathbf{SafeDrug}$	0.0742 ± 0.0026	0.7488 ± 0.0081	0.8434 ± 0.0064	13.4697 ± 1.4838
MMM	$0.0673 \pm 0.0049^{*}$	$0.7608 \pm 0.0066^*$	$0.8498 \pm 0.0046^{*}$	$\boxed{ 12.5239 \pm 0.9008}$

MMM achieves a **9.3% reduction** in DDI Rate compared to SafeDrug and a **73% reduction** compared to the recorded DDI rate (0.2509).